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ABSTRACT

The instantaneous values of output voltages representing the wind
velocity vector and the temperature at different elevations of the 250-
foot meterological tower located at NASA Wallops Flight Center are
provided with the three dimensional split-film TSI Model 1080 anemometer
system. The output voltages are sampled at a rate of one every 5 milli-
seconds, digitized and stored on digital magnetic tapes for a time
period of approximately 40 minutes, with the use of a specially designed
data acquisition system. A new calibration procedure permits the conversion
of the digital voltages to the re<pective values of the temperature and
the velocity components in a Cartesian coordinate system connected with
the TS1 probe with considerable accuracy.

Fach data-sample is divided into 58 blocks consisting of 8192 data
points each. Stationarity of the time histories is checked by inspect-
ing the variation of the block-means and with the use of a statistical
test. The velocity ccmponents are transformed into the mean wind
oriented coordinate system so that the longitudinal, lateral and verti-
cal wind components are obtained, Mean values, variances and covariances
in each data-block are first calculated and then averaged to produce
the respective sample-means, variances and covariances.

Power, cross, coincidence and quadrature spectra of the wind com-
ponents and the temperature are obtained with the use of the fast
Fourier transform. The cosine taper data window and ensemble and fre-
quency smoothing techniques are used to provide smooth estimates of the

spectral functions.
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CHAPTER I

BASIC CHARACTERISTICS OF THE ATMOSPHERIC BOUNDARY LAYER

1.1 Description of the Lower Atmosphere

The lower part of the atmosphere of the earth forms a boundary
layer with a thickness of several hundred meters. The flow in the
atmospheric boundary layer is typically turbulent, as a result of
the combined action of shear stresses, Coriolis forces and buoyancy
forces. The knowledge of the internal structure of the atmospheric
boundary layer is of great importance for a large number of modern
human activities, such as weather prediction, building and bridge
construction, launching of aircrafts and missiles, telecommunications
and air pollution control.

The atmospheric boundary layer can conveniently be divided in
smaller regions with their own particular properties.

1. The "molecular boundary layer'" is located closest to the
ground, with a thickness of the order of one millimeter. In this
region, molecular properties have a strong influence on the flow.

2. The "surface boundary layer" extends up to a height between
20 and 60 meters, depending on the conditions. It is defined as the
region where the shear stress does not vary significantly with height,
so that it can be ccnsidered as constant. In the surface boundary
layer, it is mainly the surface rough.ess and the density stratifica-

tion that determine the flow, while the Coriolis forces are negligible.

¢ et ke e e . . - s p—



3. The upper part of the atmospheric boundary layer, often called
the "Ekman layer," extends usually up to approximately 500 meters. In
this layer, the surface conditions are of minor importance while the
Coriolis forces cannot anymore be neglected.

Above the atmospheric layer, the "free atmosphere" is located,
where the air flow can be considered as inviscid and is a result of

ine tial, Coriolis and pressure gradient forces.

1.2 The Governing Equationms

The air in the surface boundary layer and the lower part of the
Ekman layer can be considered as a compressible Newtonian fluid in a
uniform gravitational nonrotating field. Let Pys To and s be the
undisturbed pressure, temperature and density of the air at a certain
height and p°, T” and o~ the respective instantaneous deviations of
pressure, temperature and density, which can be reasonably assumed
small, compared to T, and p,. Let also Uy, where 1 = 1,2,3, be
the air velocity components in a Cartesian system x x2x , where the
x3 axis is vertical. Since the flow is turbulent, it is convenient to
consider all quantities as consisting of a mean component and a fluctu-

ating component, as follows

Uian"'ui ’
T =T + 8 .
- (1.2.1)
p =p  +p ,
pT = p 4+ p”" .

For short time periods, usually not exceeding one hour, the air

flow can also be considered as steady and stationary, Steadiness of

1
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the flow implies that all mean quantities are independent of time, while
stationarity of the flow implies that all statistical quantities are
independent of time.

Making use of all the previously discussed assumptions, one can
write the general equations for the mean motion of the air in the
surface boundary layer and the lower part of the Ekman layer in the
following form.

Equation of continuity

Ui,i = () . (1.2.2)

Momentum equation
T, 0, = +ul, ., - L (1.2.3
Pty Ui,y T P T Vg g5 T Po Uiy, (1.2.3)

Energy equation
T, U, =k T .. - 8 . (1.2.4
cppo 1 71 i cppo ’iui ¢ )

The dynamic viscosity, p, the thermal conductivity, k, and the

specific heat coefficient under constant pressure, c_, of the air are

P
assumed to be constant throughout the entire region considered.
The above equations of mean motion for turbulent flow may acquire

a form similar to the equations of motion for laminar flow with the

introduction of a total stress tensor, Tij, and a total heat flux

vector, Hj’ defined respectively as
S +u(U, , +U - ) 1.2,
Tij P 6ij u( i, Uj,i) N ulu:i ( 5)
and
U, =-k T" , +c p_ 0Ou . (1.2.6)
j 37 pPo Ty

Compared to the respective quantities for laminar flow, the above
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introduced stress tensor and heat flux vector contain the additional
stresses -p ;I;; (called Reynolds stresses) and the additional heat
flux components cppo 5;; respectively.

The exact solution of the equations of motion in the atmospheric
boundary layer, due to their complicated form, presents enormous diffi-
culties. It has also been recognized that the usual mathematical analy-
sis does not possess the capability for a clear description of the tur-
bulent flow and, therefore, statistical and spectral analysis have to
be used. Statistical and spectral properties have the additional advan-

tage of being experimentally reproducibie, so that an experimental veri-

fication of related theoretical achievements is possible.

1.3 The Measurement of Atmospheric Turbulence

The properties of the lower part of the atmospheric boundary layer,
up to a height of approximately 150 meters, are usually measured with
instruments placed on meteorological towers or other tall structures,
while for higher altitudes meteorological baloons and low-flying air-
planes can be used. During the last five years, a considerable amount
of atmospheric measurements, mostly from meteorological towers, has been
gathered and several important conclusions have been derived from these
experiments. A discussion of some of these tower measurements can be
found in the references 6, 7, 17 and 26. However, these research pro-
grams have been limited in scope in the sense that none of them provided
a complete and multi-point set of measurements at reasonably high fre-

quencies. Either the vertical velocity component or the fluctuating

g i - o T oo R st A ! i *"”“Wm
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temperature are missing or measurements are made with instruments whose
frequency response is limited.

Therefore, it is the objective of this research program to make a
complete and extensive set of measurements of the three velocity compo-
nents and the temperature in the lower atmosphere. This will allow the
determination of the various statistical quantities of the velocity and
temperature fluctuations, including the vertical momentum flux and ver-
tical neat transfer, which are of main importance.

In order to achieve the above requirements, measurements of the
wind velccity components and the temperature were made at different
elevations of the 250-fouot meteorological tower located at NASA Wallops
Flight Center. As measuring instrument, the TSI three-dimensional split-~

film anemometer was selected, which provides a satisfactory accuracy and

a high frequency response for the velocity and temperature measurements.

The data obtained from the measuring instruments could be processed

ey <. i

either in analog or in digital form. The recent development of high-speed

digital computers and the invention of effective digital data-processing

=3 o s e e =

techniques permitted the fast and efficient calculation of the desired

statistical quantities from digital records of data. Therefore, a data-
acquisition system was designed, by the use of which the analog signals
produced by the anemometers were sampled, digitized and stored on digital
magnetic tapes. These magnetic tapes were further processed in digital

computers. Computer programs, based on the latest developments of the

digital data-analysis, were used to provide all desired statistical quan-
tities, such as mean values, variances and covariances, turbulence inten-

sities and power and cross-spectral density functions.
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CHAPTER II

INSTRUMENTATION AND CALIBRATION PROCEDURES

2.1 The TSI 1080 Three-Dimensional Split-Film Anemometer System

The TSI (Thermo-Systems Inc.) Model 1080 Anemometer provides volt-
age measurements, from which the instantaneous velocity vector and the
temperature at a certain point in moving air can be calculated. The
TSI 1080 system consists of the following components:

1. The Probe (Model 1296E), comsisting of three sensor rods for
a total of six hot film anemometers and one thermocouple. The probe
will be described in detail in section 2.2.

2. One Control Circuit (Model 1053BP6T) for each probe, controlling
the six films and the amplifier of the thermocouple. The front panel
of the control circuit contains the pin jacks for the bridge-voltage
outputs, the 0-5 volt outputs and the thermocouple output. In addition,
it contains the balance potentiometers to ensure same temperature of
adjacent films and the zero and gain adjustments for the thermocouple
amplifier and the 0-5 volt outputs.

3. One Voltage Regulator (Model 1051F), supplying regulated +19
volts and =19 volts to six control circuits.

4, One Chassis (Model 1045G6) for six control circuits.

5. One "Rough" Power Supply (Model 1051FIR), with a capability
to supply 8 regulators with #24 volts DC and 110 volts AC.

For further information on the anemometer and its operation,

—
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one is referred to the Operating and Service Manual for Model 1080

Total Vector Anemometer by Thermo Systems Inc.

2,2 The Probe

A schematic drawing of the TSI Model 1296E Probe is provided in
figure 1. 1Its main parts are the three sensors, the thermocouple, the
supporting structure, the protective shield, the pneumatic cylinder
and valve, the mounting flange, the electrical leads and the cable
connector,

The three sensor rods are mounted mutually perpendicular to form
a Cartesian coordinate system as shown in figu.e 2. A thin platinum
film of approximately 1000 angstrom thickness and 0.080 inch long is
placed on a 0.2 inch long, 0.006 inch diameter cylindrical quartz rod.
A thin coat of quartz over the film is used to provide environmental
protection. The platinum film on each rod consists of two segments,
separated from each other by two longitudinal splits 180 degrees apart,
The orientation of the splits on each sensor rod is such that it allows
the determination of the octant in which the instantaneous velocity
vector is located. For minimum support interference the three sensor
rods are mounted at only one end to a long and thin supporting structure.

A copper-constantan thermocouple is mounted close to the sensors
and measures ambient temperature with a maximum frequency response of
25 hertz.

The three sensors and the thermocouple are protected, while not

in use, by an aluminum shield which can be placed over the sensors
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and retracted pneumatically. Due to difficulties in supplying proper
air pressure at the sonic orifices when the probes are mounted on a tall
meteorological tower, the sensors are balanced at the no-flow condition.
A weak air stream is continuously supplied through the shield, in order
to keep the sensors free of contamination while not in operation.

Six TSI 1296E probes were mounted on the NASA Wallops Island
250-foot meteorological tower at the 30, 50, 100, 150, 200 and 250-
foot levels. All probes are mounted in a vertical plane which also
contains the axis of the tower. The maximum horizontally-measured
distance between the two probes at the 30 and 250-foot levels is
approximately 13 feet. Each probe is mounted with its axis in a hori-
zontal direction, on a rotor that is controlled from the instrumentation
trailer and can be rotated about a vertical gxis to obtain any posi-
tion between 0 and 360 degrees, with an accuracy of about :l degree.
The rotor is supported by an 8 feet long boom, mounted perpendicular

to the south face of the 250-foot meteorological tower.

2.3 The Data Acquisition System

The Data Acquisition System was designed to provide simultaneous
digitized data from one to thirteen TSI 1080 anemometer systems, sam-
pled at a rate of 20C samples per second, for a time duration of ap~
proximately 40 minutes. All necessary equipment and controls are
fixed in an instrumentation trailer placed under the tower. The sys-
tem consists of two main parts with separated operation: a) the

multiplexing and analog recording system, shown in figure 4 and b) the

s




demultiplexing, digitizing and digital recording system, shown in
figure 5.

Each anemometer provides seven analog voltages: one from the
thermocouple and six from the hot films of each probe. All voltages
are in the range of 0-5 volts. Each voltage is frequency modulated
by a voltage-controlled oscillator (Data-Control Systems Inc., Model
GOV-5C), each with a different center frequency. For the outputs
of each anemometer there is one set of voltage~controlled oscillators
with center frequencies of », 12, 16, 20, 24, 28, and 32 kilohertz
respectively. All voltage-controlled oscillators operate at a devia-
tion from their center frequency of *1 kilohertz for a maximum voltage
input 5 volts. The seven frequency modulated signals together with
a reference signal of 100 kilohertz produced by a reference oscillator
are summed by a Summing Amplifier (Data-Control Systems Inc., Model
GAS-5), to produce one single multiplexed signal of approximately 3
volts peak-to-peak.

The six multiplexed signals from the six anemometers are simul-
taneously recorded on six separate channels of a l4-channel analog
tape recorder (Bell and Howell, Model VR3700B). The time-of-day,
provided by a time-of-day Generator (Hermes Electronics Co.) in NASA
fast serial time code and monitored by a remote display (Itek Electro-
Products Co., Model 2124C), is recorded on the fourteenth channel of
the analog tape recorder.

The demultiplexing, digitizing and digital recording system

can handle data from one anemometer, i.e. one channel of the analog
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tape at a time. The analog tape is played back and the multiplexed
signal from the desired channel is demultiplexed to its seven components
by passing through seven discriminators (Data-Control Systems, Inc.,
Model GFD-16). The center frequency of each discriminator corresponds
to the center frequency of one of the voltage controlled oscillators

and each discriminator prcduces an output voltage of 5 volts. A
reference discriminator senses any deviation in the reference fre-
quency of 100 kilohertz caused by fluctuations in the tape speed of

the analog tape recorder, and corrects the output of the other seven
discriminators with a feedback procedure.

The six outputs corresponding to the six anemometer bridge
voltages are each passed through a low-pass filter (VIC Model LMI-
10n), which removes any frequency component over 100 hertz. This
is necessary in order to avoid aliasing (distortion) of the velocity
spectra at frequencies below 100 hertz. The thermocouple output
need not be filtered since it does not contain frequencies higher than
25 hertz.

The seven analog voltages are fed to the multiplexing analog-to-
digital converter (DEC Model ADO1-D). It converts an amalog signal
to an 1l-bit (plus sign) digital word with a time of 5 micro-seconds.
The total scan, settling and conversion time for one sample of seven
voltages is 50 microseconds, which is approximately 1% of the time
interval between two samples.

The recorded time-of-day Is converted to a 32-bit binary coded

W

decimal signal by a serilal-to-parallel converter (Hermes Electronics

TUTTI T e : H ’ M Sl T T
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Co.). This converter is interfaced with the computer by a Digital
Equipment Corporation custom-designed interface.

The Computer (DEC Model PDP 11/20) controls the multip.exing
analog-to-digital converter and the digital tape recorder (DEC Model
TRO6-FB) through a tape transport controller (DEC Model TB68-C). The
computer is programmable in DEC PAL-ll assembly language and has an
8K memory of 16-bit-words. Input and output to the computer is ub-
tained through a teletypewriter.

The conversion starts at a time-of-day prescrived by the opera-
tor to assure correlated data for the different anemometers. Then
the analog-to-digital converter performs successive scans and conver-
sion of the seven analog voltages into two-byte words at a rate of
one scan every 5 milliseconds. These words are stored in one of the
four buffers of the computer. When the buffer, having a capacity
of 209 scans or 2926 bytes, is filled with data, it is dumped on a
9-track digital magnetic tape., A total ~f 2298 blocks or 480,282 data
points make up one sample of data, extended over a time period of

approximately 40 minutes.

2.4 Conversion of the Output Signals into the Actual Quantities

A detailed discussion of the theory of operation of hot-wire and
hot-film anemometers can be found in the references 15 and 22. This
report is limited to a discussion of the empirical expressions obtained
through the calibration of the probes from which the three velocity

components in the sensor-oriented coordinate system can be calculated.

!
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Each one of the six films of the probe is connected in a bridge
circuit as shown in figure 6 and operates at a coastant temperature.
Special care has been taken so that both films of each sensor operate
at the same temperature, in order to prevent heat transfer from one
film to the other.

The bridge voltage is amplified in a feedback locp to ascertain
thermal inertia compensation and is measured to provid: the value E&i’
where the subscript o = A,B,C stands for the ser . rod and the sub-
script 1 = 1,2 stauds for the appropriate film (. - tigure 2 for the

exact location and orientation of all six films). The 0-5 volt out-

put circuit is set up so that the bridge voltage for each film can

be obtained from the corresponding 0-5 output voltage, Vci, with
the following expression
E =2V +3,a=AB,C , {=1],2 . (2.4.1)

al ai

The heat convected from the electric heated element to the ambient
air is proportional to the square of the voltage drop iun this element
and can be approximated by the following expression

= . . 2 . . < = G,
Q, = CFy K E2 + CF012 kaz Eaz. o = A,B,C y  (2.4.2)

where Kal and l(m2 are calibration constants for each film and CFal
and CFuz are correction factors to account for cuble and ambient tempera-
ture changes. According to reference 22, the expression for these

correction factors is

AR T®-1°

l cai] fa a

CFQi - 1 + R 0 T _ .r . (2.“03)
f a

[ ;J ai

f
1
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The zero-superscribed guantities rcier to the TSI calibration
conditions. The change of the cable resistance due to a change in
cable temperature from the TSI ambient temperature, Tao, is equal in

ARcui - Rczi - R%i - -Rc:iacz('rc -1.% , (2.4.4)
where the temperature coefficient of resistivity for copper, refer-

o
enced to the temperature Ta s can be calculated as

I S . (2.4.5)

o
CU4  390.1 + T
a

I R™ 1s the resistance of the cable measured at a tempera-
af
ture, Tcm, then the cable reristance at TSI ambi~nt temperature can

be calculated from the fcllowing expression

-

RS aR™ [ 4m—te——ro_1% . (2.4.6)
Cai Cai 390.1 + TC‘“ a ¢

The hot-film resistance, Rf » at TSI conditions can be calculated
ai

from the measured cold-film resistance, REOId. as
ai
RS = R§°ld[1 + oS0l (r.° - r;°1d)] . (2.4.7)
ai ai al a
where a§°1d is the measured temperature coefficient of resistivitv of
ai
the film.

The hot-film resistance at operation conditions in the wind
tunnel or in the atmosphere can be obtained from the hot-film re-
sistance at TSI conditions according to the expression

R, =R %+ M . (2.4.8)

fa1 fai Cai

This is due to the fact that the total resistance in the

bl B sl
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bridge arm containing the cable and the film must be constant. There~
fore, a change in cable resistance causes a change in hot-film resis-
tance and, as a result, changes the operation temperature of the film,
The new operation temperature of the film can be calculated from the

following expression

AR
o ‘ol
T = T + . 204.9
fai fq Olcold Rcold ( )
£ai fui

In order to be able to use the same empirical expressions when
the density of the air changes, all velocities are calculated for
standard pressure and temperature of

P, = 14,7 psia = 29.92 in Hg
T, = 530° R .

Since the hot-film sensors measure the mass flux, pU, where p

is the air density, the standard velocity Us’ can be obtained with

use of the equation of state as follows

T
v =u .2 .8 . (2.4.10)
s P T
E a

When the hot film is heated in flowing air, the heat convected
from the film to the air depends on the velocity magnitude as well

as the angle of attack, ¢. The effective cooling velocity, U,, is

e’
defined as the normal velocity that would produce the same amount
of cooling from the film, as produced by the actual velocity, U,

at a particular angle of attack, ¢. The standard effective-cool~

ing velocity, Ues’ can be obtained from the heat transfer,. G,
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thiough an expression of the “ollowing form

—%— - py ” , (2.4.11)

wvhere the constants D and n are to be obtained through calibration
of the probes. In order to obtain identical calibration curves (heat
transfer versus standard effective-cooling velocities) for all three
sensors on the same probe, the calibration constants Kai need to be

adjusted.

According to reference 8, the standard effective-cooling velocities

are related to the magnitude of the standard velocity, US, and the

angle of attack, ¢4, by the expression

2 5 2 2 2 =
Uesa US (cos ¢a + ka sin ¢u) », a=ABC . (2.4.12)

where the constants %,, kB, ke are of the order of 0.1 and have to be
determined through calibration. The three sensor-vaw angles $ps Op

and ¢c have the following trigonometric relationships

sinZg, + sin2¢B + sin2¢c = 1
and (2.4.13)

cosz¢A + cosz¢B + cos?¢p = 2 .

Assuming that identical values cf ka exist for all three
sensors and using the above trigonometric relationships, one obtains
the magnitude of the standard velocity in terms of the standard

effective-cooling velocities of the three sensors, as follows




=
——
s

[ S
——

16

{
{
i
:

U g + ueg +Uu2
S5 B eS¢

U2 =
s Kk

, (2.4.14)
av

where the constant k,y 1s of the order of 2.1, VNow the sensor-yaw

angles can be calculated from

- U 277%
es
1-1C
Sy
|¢a| = arcsin |—u— 5 _ s (2.4.15)
1 -k
- [0} .

where the coefficients C Cps CC are the reciprocal of the respec-

A?
tive maximum values of Ues /US at zero sensor-yaw angle. Ideally,
the values of these coefficients should be equal to one, but due to
experimental errors and errors in curve fitting they may deviate a
small amount from unity.

The sign rf each angle can be determined by comparing the ratio
of the voltages of the two films of some other sensor to the ratio,
R, of the voltages of the same two films, when the velocity vector lies
in the plane of their split. Hence,

/E

/

R

>0 when c2 > Rg .

%A Ee1

¢p > 0 when

EA]. EAZ > A\A

and

9c > 0 when EBI/EBZ > R

8 .
The actual velocity components in the sensor-oriented coordinate

system will be calculated by the equations
Ua =1 sin¢a , o = A,B,C . (2.4.16)

where the actual velocity magnitude, U, is calculated from the standard-
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velocity magnitude, Us, by
P T
Uwy *+ 2.2 . (2.0.17)
s p

Ts

The ambient temperature can be calculated from the output voltage
of the thermocouple, according to the following linear expression

T, = Cp+¥p + Cpy , (2.4.18)

where the values of the constants CT1 and C are determined througn

4 T2
calibration of the thermocouple. It is assumed that the thermocouples

are not affected by the heat convected from the hot films.

2.5 Calibration of the Anemometers

It was concluded in reference 22 that the data analysis suggested
by TSI does not possess the required accuracy. Therefore, a new
method based on new calibration procedures was developed. It was also
concluded that accurate measurements with the TSI 1296E probe are only
obtained when the mean velocities are in a directior nearly-parallel
to the axis of the probe. This can be made possible for the tower
measurements by rotating the probe, until it is approximately in the
mean wind direction. If during the measurement period of 40 minutes
the mean wind would change d:-ection appreciably, the data would be
discarded as being non-stationary.

The calibration of the split-film sensors was carried out in
the low-speed Aerolab wind tunnel, located in the Quality Veri-

fication and Calibration Facility at NASA, Wallops Flight Center.
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The test section dimensions are 32 inches (height) by 45 inches
(width) by 48 inches (length). The air flow is produced by a three-
blade variable pitch propeller, moved by a 1160 RPM / 50 HP con-
stant speed electric motor. Temperature and air speed in the test
section are measured with an electronic thermometer (Atkins H-51)
and twc electronic manometers (CGS Models 1015 and 1014A) recrec-
tively. Their outputs, together with Lhe six voltages from the
TSI anemometers are scanned, digitized and averaged for a period
of approximately 2 seconds. The data acquisition system is con-
trolled by a HP 9810A programmable calculator and a HP 2570A
coupler/controller. The average values of the temperature, the
standard velocity and the six bridge voltages from the TSI anemo-
meter are printed on paper tape.

The probe was mounted on a vertical support and could be
rotated in a horizontal plane at any probe~yaw angle, B8, while
the probe-pitch angle, a, was held equal to zero. Rotation of
90 degrees of the probe on the support offered the possibility
of varying the pitch angle, a, while keeping the probe-yaw angle,
B, equal to zero. Three sets of data, each for 13 different flow
velocities between 3.5 and 50 feet per second were first taken,
with the probe in such a position that one sensor at a time was
perpendicular to the flow. From the geometry of the sensor array
it can be seen that A is perpendicular to the flow when o = ~35,26
degrees and B = 0 degrees, B is perpendicular to the flow when

a = 0 degrees and B = 39.25 degrees and C is perpendicular to the
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flow when a = 0 degrees and B = -39.25 degrees. Nine more sets of
data, each for five air velocities between 6 and 35 feet per second,
were also taken for o= 0 and 8= 0, *10, *+20, *30 and *50 degrees.
The data required for the calculation of the temperature cor-
rection factors for each film as given by equation 2.4.3 are ob-

tained from the following measurements. The resistance of the cold
films, Rc°1d, at ambient temperature Tcold
fod £
resistances, " » at temperature Tcm, are measured with a preci-
Cai
sion digital volt-ohm-meter (Fluke Model 8200A). The temperature
coefficient of resistivity of the films, a;OId, is calculated
ai
from measuremer. s in the thermal-chamber, also located in the

, as well as the cable

Quality Verification and Calibration Facility.

The different cornstants that are necessary for the calcula-
tion of the velocity components will now have to be determined from
the above measurements. First, the rate at which heat is convected
from each sensor when it is perpendicular to the flow is calculated,
by making use of the equation 2.4.2 and using values suggested

by TSI as a first approximation for the constants Ku Then the

.
heat fluxes for the three sensors are plotted versus the standard
velocities and the values of Kai are adjusted, so that the data
collapse to one single curve.

The next step is to determine the proper coefficient D and
exponent n in the expression 2.4.1l, which will fit the experi-

mental data. It has been found that not one single set of values

for D and n will describe the calihration curve adequately. The
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calibration curve has to be divided into three ranges with different
values of D and n in each range.
Once the heat flux versus effective cooling-velocity relation

has been established, the standard cooling velccities, U , can be

es
calculated for different sensor-yaw angles. Accepting that an
expression of the form of 2.4.14 exists, an average value of the
coefficient k,, canbe obtained, for which the probe is expected to
operate most of the time. The value of the standard velocity magni-
tude, Vs, is obtained from the measurement of the dynamic pressure

by a Pitot-static tube in the wind tunnmel.

The final step is to determine the constants for the expression
2.4.15, which yield the magnitudes of the sensor-yaw angles. These
constants for sensors B and C are obtainead by fitting a curve of the
form 2.4.15 to the calibration data, obtained by plotting of the
velocity ratios Ues/Us versus the respective sensor-yaw angles. In
order to obtain the yaw angle for sensor A, use is made of the trigono-
metric relationship 2.4.13.

The copper~constantan thermocouple is independently calibrated.
First the zero and gain potentiometers were set up approximately, so
that an output-voltage range of 0 to 5 volts DC corresponds to a
temperature range of 0 to 200 degrees Fahrenheit. Then the thermo-
couple was placed in ther thermal-chamber and measurements of the out-
put voltage were taken for temperatures in the range from 20 to 100
degrees Fahrenheit. Fitting the so obtained data to a straight line

permits the calculation of the values of the constants in the expression

2.4.18.
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As an example of the above calibration procedure and its accuracy,
the calibration constants and the observed calibration errors are pro-
vided for the TSI #1193 Anemometer, which was placed in the 100-foot
level of the meteorological tower. The experimental values of Ues/Us
and the semi-empirical relation of the form of equation 2.4.15 are
plotted versus the sensor-yaw angle, ¢, in figure 7 for sensor B and in
figure 8 for sensor C. The calibration curve for the heat flux versus
the standard effective cooling velocity for all three sensors is shown
in figure 9. All necessary calibration constants are provided in
table I. Finally, the observed calibration error in the calculation
of the velocity components versus sensor-yaw angle is shown in figure
10 and the error in the calculation of the velocity magnitude versus the

probe-yaw angle is shown in figure ll.

M o
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CHAPTER III

STATISTICAL ANALYSIS OF THE DATA

3.1 Limitations of Discrete Time Histories

Consider a physical quantity x(t), which shows a random variation
with time. Every record, xk(t), of the output of an instrument measur-
ing the quantity x(t) over a finite time interval is called a time ’ :
history. Every record of x(t) extending over an infinite time interval
is called a sample function. The ensemble of all possible sample func-
tions, that can be recorded if the measurement of x(t) is repeated an
infinite number of times, is called time series (or random process
or stochastic process) and is denoted as {xX(t)}. The assumption of
ergodicity permits the derivation of desired information about the
entire time series from the analysis of a single arbitrary time history.

In many cases, the continuous output of the measuring instruments
is digitized and sampled at some appropriate uniform time increment, At,
over a total time interval, T. Then the time series which is being
measure¢d is represented by the discrete time history, X where by
definition

xi = x(i-At) for 1= 1,2,...,N (3.1.1)
and the total record time, T, is equal to the time increment, At, tinmes
the number of data points in the sample, N.

The analysis of discrete time histories is subjected to the fol-

22
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lowing constraints:
i) Sampling of the time sgeries.
11) Finite record length.
i11) Discretization of data.
iv) Restricted range of data, due to the limited response of the
transducer used.
It is required that the effects of these constraints are confined

by the use of appropriate techniques.

3.2 Basic Statistical Definitions

Giver any sample function of time, x(t), its mean value, Mo is

defined as

T
1
= li o t dt. 3.2\1
By IZ;ZT_{-X() ' ( )

while its mean square value, Wi, is defined as

T

Y2 = 1im / x2(t)de . (3.2.2)
-T

1
X 2T

Troo
The average of the squared differences of each value of x(t) from
the mean value is called the variance, ci, defined as
T
62 = lm 2= /[x(e) - v J2at . (3.2.3)
Too -T
The squarc root of the variance, Oys is called standard deviation.
Given two sample functions, x(t) and y(t), their covariance, Uiy'
is defined as

T
2 o 1 - -
o 1;1 >7 -4 [x(t) - w,)ly(t) uy] dt . (3.2.4)

%
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The dependence of future values of the considered sample functions
x(t) or y(t) upon the present values of x(t) is described by the auto-
correlation function, Rx(r), and the cross-correlation function, ny(T),
which are respectively defined as

T

1
Rx(r) l;Tw T -£ x(t) x(t + 1)dt , (3.2.5)
and
T
Rey (1) = 1m L/ x(e) y(c + e . (3.2..)
T+w 2T o7

When a discrete time history, xi, where 1 = 1,2,..,,N is given,
its mean value, ;, is defined as
N

Z xi . (3.2-7)
i=l

1
N

X =
Then any instantaneous value, X4, can be considered as the com-
bination of a static or mean component, x, and a dynamic or fluctuating
component, Xg» 80 that
i-X+X1 . (3.2-8)
As a result of the definition of the mean value, it comes out that

X

the mean value of the fluctuating component is equal to zero, i.e.
x = 0.

In many cases it is necessary to remove the mean component from
the discrete time history and therefore generate a new mean-free time
history, which contains only the fluétuating component. This 1is ob-
tained by subtracting the mean value, X, from each instantaneous value,
L of the original time history.

If x,, for { = 1,2,...,N, is such a mean-free time history, ite

i,
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variance, ;7, is given by the expression

N
X2 =i 2
x N 1E1x1 . (3.2.9)

1f xi and y1 are both mean-free time histories, their covariance,

§;, is defined as

xiyi . (3'2010)

The existerce of slowly varying mean values in the time histories
results in great distortions of their spectral estimates. Therefore,
it is good practice to remove the means from the data before proceeding
with the spectral analysis. The removal of the means proved necessary
for time histories related to atmospheric measurements, such as air

velocity, temperature and pressure.

3.3 Partition of Each Sample of Data into Blocks

As described in Chapter II, each sample of data from each TSI 1080
probe consists of four discrete time histories, namely the three velo-
city components in the sensor oriented coordinate system and the temper-
ature, sampled at a rate of 200 points per second, for a time period
of approximately 40 minutes., The total number of data points in each
time history is approximatcly 48(,000.

The simultaneous spectral analysis of this number of data points
is far beyond the capacity of any available computer. It is therefore
necessary that each time history is divided into a number of data blocks

and that the statistical and spectral analysis is applied separately to

i e
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each block., As will be explained in Chapter 4.3, the most efficient
use of the fast Fourier transform requires that the number of data
points per block 18 equal to an inte,.. power of 2. After considera-
tivn of the capacity of the IBM 370 computer that was used, the number
of data points per block was chosen to be N = 213 = 8192, Consequently,
the number of data blocks in each time history had to be taken as M = 58,
so that the total number of data in each time history was reduced to
YN = 475,136 , corresponding to a time period of approximately 39 min-
utes and 35 seconds.

Assuming that the data sample is stationary, mean quantities, vari-
ances and covariances in each block were first calculated and later
all block means, variances and covariances were averaged to provide the
sample mcan values, the sample variances and the sample covariances of

the fluctuations of the three velocity components and the temperature.

3.4 Stationarity Tests

As already mentioned in former chapters, the statistical and spec-
tral analysis is based on the assumption that the time histories are
stationary. Therefore, it is required that this assumption is carefully
checked. This will be done in two ways:

1. By simply inspecting the variation of the block means, the
block standard deviations and the block probe-vaw angles. Large varia-
tions of the mcan wind, while large variations of the standard devia-
tions indicate that the frequency structure of the turbulence is vary-

ing with time. The magnitude of the probe-yaw angle, i.e. the angle «

TP L
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between the Jongitudinal axis of the probe and the direction of the
horizontal mean wind, will also determine the level of accuracy of the
probe operation, since the most accurate data are obtained when the
probe is directed straight into the mean wind direction.

2. Bv detecting monowonic trends using the following nonstation-
aritv trend test.

1f¢ Al

s, 1 =1,2,...,M represent any uf the statistical quantities
calculated in the {th data block, the total number of reverse arrange-

ments, R, is defined as

M-l M
R= I T Rij . (3.4.1)
i=l j=i+l
vhere
i
1 , §if A >Aj ,
Ryg ™ 1,1
0 , if A* <A . (3.4.2)

Assuming a normal distribution for the number of reverse arrange-
ments, there exists a certain interval [RI'RZ] for the values of R, in
whicl. one can be assured at a certain level of confidence, u, that
the data sample does not show any monotonic tiend. For values of R
greater than Rz’ a downward trend of the statistical quantitv tested
is to b2 expected, while for values of R smaller than Rl' the Jdata
samnle shows an upward trend of the respective statistical quantitv.

The limits of the stationarity interval have been calculated in
reference 23 for a total number cf blocks, M, between 10 and 100.

For M = 58, it was found that at a confidence level, a, equal to 907,

the lower limit, R , is equal to 703 and the upper limit, R , is equal
. .
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o b b o

to 949, while at a confidence level 98%, R1 is equal to 652 and R2 is
equal to 1000,

The stationarity trend test is performed for the block means of
the three velocity components, the magnitude of the velocity vector
and the probe-yaw angle, as well as the block standard deviations of
the three velocity components.

Based on the results f the inspection and the nonstationarity
trend test of the block statistical quantities, a decision will bhe
made at this point whether or not to continue the statistical analysis

for each one sample of data.

3.5 Coordinate Transformation into the Mean-Wind Oriented Coordinate

System

The TSI 1030 anemometers provide the three components UA’ UB and
Ue of the wind velocity vector in the Cartesian system that is formed
by the three sensors, as shown in figure 2.

Nevertheless, the velocity components have to be expressed in some
coordinate system, which is physically connected with the flow field.
For this purpose, the mean-wind oriented coordinate system, with co-
ordinate directiong %,y and z was introduced. This is a Cartesian
system, where the z-axis is vertically upward, the x- and y-axes are
horizontal and the sample mean velocity vector has to lie in the x-z
planc. Then, bv definition, the y-component of the sample mean velocity
is zero, On the other hand, since the flow in the atmospheric boundary

layer is almost horizontal, it is expected that the z-component of the

EmisoTeatiie? s spgrits e 3%
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sample mean velocity vector will be very small compared to the x-component.
Using geometrical relations between the two coordinate systems,

one finds that the transformation will have the following matrix form

u| |0.57735c0s8 0.57735cosR~0.70711sinf 0.57735cosR+0.70711sinB UA
v[= 0.57735sinf 0.57735sinBf+0.70711lcosB 0.57735sinB-0.70711cosk UB
w ~0.81650 0.40824 0.40824 UCJ

(3.5.1)
where u, v and w are the velocity components in the xyz-system and [ is
the sample probe-yaw angle, defined as the angle between the axis of the
probe and the x-axis, as shown in figure 3.

According to the geometry of the probe, the sample prote-vaw angle

can be calculated from the following expression

EC -u., ) , (3.5.2)
L B
R = arctan|l1.22475 = = —

U + UB + UC
where EA, EB and Eﬁ are the sample mean values of the velccity components
UA’ Uy, and UC respectively.

3,6 Calculation of the Mean Values, Variances and Covariances

After the transformation of the velocity components into the mean-
wind oriented coordinate system, the time histories to be analyzed are
the temperature, T (in degrees Fahrenheit), the longitudinal velocity
component, u, the lateral velocity componert, v, and the vertical velo-
city component, w (all velocity components are expressed in feet per

second). Again as before, each time history is divided into 58 blocks

o S

of 8192 data points each.
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The sample-mean values are calculated in two steps. First, the

5. 4}
block-mean values, x , are calculated from the expression

-n 1 N
X =g Lx (3.6.1)

1=1 1
and then all block-means are averaged to produce the respective sample-

mean values, x, as follows

n

M
X . (3.6.2)

X =

<4

n=1
where x represents any one of the quantities T, u, v or w.

For the calculation of the variances and covariances, it is neces-
sary to use time histories with zero mean values. Therefore, the
block-means have to be subtracted from all values in each block and
the block-variances, ;zn’ and sample-covariances, ;;n' of the time

histories represeuted by x and y,are calculated as

=L v (3.6.3)
N |
i=.
and
b ¢} 1 N n -0
Xy~ =y b (xi - X )(yi -y) . (3.6.4)
i=1

The sample-variances,';z, and sample-covariances, §§, are calculated

as the average of the respective block-quantities, as follows

M
=Ll , (3.6.5)
M
n=1
and
M
e S . (3.6.6)
M n=1
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CHAPTER IV
SPECTRAL CALCULATIONS
4,1 Definitions

The nature ind properties of a physical system, whose character-
istics are measured as functions of time, are well illustrated with
the spectral density functions in the frequency domain.

A function that describes the general frequency composition of the
measured quantity, x(t), and the relative significance of every frequency
is the power spectral density function, G,(f). There exist three ways
by which the power spectral density function can be defined.

1. From the direct Fourier transform of the function x(t), accord-~

ing to the expression

T 2
—127ft
G, (£) = 2-1im %T fox(t)ee Chae . (4.1.1)
T =T )

2. TFrom the Fourier transform of the autocorrelation function, as

follows

—iZ"Tfth

G (f) =2 f Ry(1)ve C(4.1.2)

3. From the mean square value of the output of a sharp band-pass
filter. The filter output, x(t,f,Af), consists of the portion of x(t)
that lies in a frequency range with center frequency f and bandwidth Af.

The power spectral density function is then defined as follows

31
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T

1 1

G (f) = lim <|lim — x2 (t,f,Af)dt . (4.1.3)

2£+0 2| Tow 20 7

All three definitions of the power spectral density function are

asymptotically equivalent, when applied to stationary time series.

The

power spectral density function is always a real-valued, non-negative

function of frequency. Its complete plot versus frequency is called

power spectrum. Since negative frequencies do not possess any physical

meaning, the power spectrum extends only in the positive frequency domain.

The joint properties of two functions of time, x(t) and y(t), in

the frequency domain, are described by the cross-spectral density func-

tion ny(f). Similar to the power spectral demsity function, the

cross-spectral density function can be defined in three equivalent ways.

1. From the Fourier transform, Y(f,T), of y(t) and the complex

conjugate, X*(f,T), of the Fourier transform of x(t), as follow-

1

G (£) = 2 lim | == X*(£,T)-Y(£,T) , (4.1.4)

2T

T

where the finite Fourier transform, X(f,T), of the function x(t) in the

iucerval (-T,T) is defined as

T -12nft

X(£,T) = [ x(t)-e dt . (4.1.5)
-T

2. TFrom the crcss-correlation function, according to the expres-

sion

-127f¢

ny(f) =2 i ny(T) e

dr . (4.1.6)

3. From the product of the output of two band-pass filters, ap-
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plied to the funciions x(t) and y(t), according to the expression

T
1 1
G. (f) = lim lim 2=| / x(t,f,0f)ey(t,f,Af)dt -
xy afs0 % | e 2T p o
T
-1 f x(t,£,a£)y°(t,£,0f)dt , (4.1.7)
~T

where the function y°(t,f,Af) is equal to the function y(t,f,Af) shifted
90 degrees in phase angle.

The cross-spectral density function is in general a complex func-
tion of frequency, consisting of a real part, ny(f), called coincident

or co-spectral density function and an imaginary part, (f), called

..Qxy

quadrature or quad-spectral density function, i.e.

ny(f) = ny(f) - iQxy(f) . (4.1.8)

Alternatively, the cross-spectral density function can be expressed
in polar form as
-i6__(f)
= . Xy
Gy (£) = 16, (D) ] e , (4.1.9)
where the magnitude and the phase angle are related to the co- and

quad-spectral density functions by the expressions

= [c2 2 3
o, (B = [c2,(6) + ady(0)] . (4.1.10)
and
Q _(f)
ex (f) = arctan|-XL._ (4.1.11)
y
ny(f)

A real-valued quantity, which is related to the cross-spectral

density tunction, is the coherence function, defined as

' 6 (£)]°
y2(f) = —2 : (4.1.12)
xy G, (£) Gy (£)
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The coherence function i1s a measure of the correlation betweenm the
values of two functions of time and takes values between 0 and 1. When
the coherence function is equal to zero for a certain frequency, £, the
two functions, x(t) and y(t), are said to be incoherent at the frequency
f. When the coherence function is equal to unity for all frequencies,

the two functions are said to be fully coherent.

The graphical representation of the cross-spectral density function
is called cross-spectrum. It consists of the plot of both the magni-
tude and the phase angle of the cross~spectral density function versus
frequency.

Based on the definitions mentioned above, three different methods
for the calculation of the power- and cross~spectral density functioms
are available., The recent development of FFT (fast Fourier transform)
techniques made the direct Fourier transform exceedingly advantageous
for the spectral analysis of long time histories. Therefore, the
direct Fourier transform method based on anew FFT technique, as des-

cribed in the following sections, will be used.

4,2 Fiﬁite Interval Effect -- Cosine Taper Data Window

Any time history is by definition extended over a finite time inter-
val, Definitions and equations, which are proper for infinite time
series, may be erroneous, when applied to time histories. Therefore,
careful consideration of the finite interval effect has to be made.

The general Fourier transform, X(f), of the time function x(t) is

defined as

i s 4 Ve
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X(£) = f x(t)-e 12"Etq¢ , (4.2.1)

while the finite Fourier transform, X(f,T), of the time history x(t),

where t lies in the interval {-T,T], is defined as

T
X(£,T) = [ x(t)-e 127EL4,

-T

. (4.2.2)

Any time history can be considered as produced by a sample function,
x(t), multiplied by a window function, w(t), which eliminates all values
of x(t) outside the interval [-T,T]. The window function that permits
all values in the interval [-T,T] to pass undeformed is called the
rectangular or boxcar window function and is defined as

1 Jt] <1
w(t) =
0 T< |t . (4.2.3)

With the use of the rectangular window function, the finite Fourier

transform can be alternatively expressed as

-]

XCE,T) = [ x(t) w(t) e 1&Ety, ) (4.2.4)

-l

According to the convolution theorem, the finite Fourier transform can
also be considered as the convolution of the general Fourier transform,

X(f), with the Fourier transform, W(f,T), of the window function, i.e.

oo

X(£,T) = J X(f -E)VWE,T)E . (4.2.5)

-0

The Fourjer transform of the rectangular window function i. cal-

culated to he

w T
- € - 'i 2 ft
W(E,T) =  fu(ty e 127 tqe = 1 12ty & 3——“—;;"—— . (4.2.6)
- -T

|
t



MR 198 4 shatn i et e e

i
i
$

36

The rectangular window function and its Fourier transform for
positive frequencies are shown in figure 12.

The effect of the rectangular window can be illustrated with the
following example, Consider the sinusoidal function x(t) = cos anot,
where fo is a constant frequency. 1Its infinite Fourier transform is
calculated to be

X(£) = H[8(f + £,) + 8(f - fo)] ' (4.2.7)
while its finite Fourier transform in the interval [~T,T] is calculated,

according to equation 4.2.5, as

[ sin 2n(f + fo)T sin 2n(f - £ )T
X(£,T) = & + = . (4.2.8)
w(f + fo) 7(f - fo)

The functions X(f) and X(f,T) are plotted versus frequencv in
figure 13 for the range of positive frequencies and for the case when
the product foT is equal to 5. As can be seen in this figure, the
function X(f) has a non-zero value only at the point f = fo’ while the
function X(f,T) extends over the entire frequency domain and presents
positive and negative peaks, called sidelobes.

When x(t) is a wide~band function (i.e. having a wide frequency
spectrum), its finite Fourier transform will consist of the superim-
posed effects of all frequencles, according to equation 4.2.5. Al-
though the negative sidelobes effect will now be much smaller than in
the narrow-band function case, a distortion in the spectral estimates
Is to be expected. Under certain circumstances, it is even possible that
negative values of the power spectral density function appear for
certain frequencies, which is opposed to the physical significance of

this function, This danger is reduced by replacing the rectangular

L R e
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window function with some other window function, which presents lower
sidelobes.

From the existing number of data window functions, which have been
suggested and used by different authors, the cosine taper data window
function was chosen as most satisfactory for meteorological time his-~
tories. The cosine taper data window function deforms one tenth of the
data at each end by multiplying these data by a half cosine bell and
leaves the rest eight tenths of the data undeformed. This window func-
tion is defined in the interval [-T,T] as follows,

T < |t]

logtl 0.8T < |t| < T

J
1 0 < |t] <o.8T . (4.2.9)

w(t) = %[l + cos

The Fourier transform of the cosine taper data window function is

(25 - 12 £212) (8in(27fT) + sin(2%£0.8T)]
W(£,T) = . (4.2.10)
2n£[25 - 4£212)

Beth the cosine taper data window function and its Fourier trans-
form are shown in figure 14. Compared to the rectangular window function,
it shows lower sidelobes and, therefore, produces less leakage in the
spectral estimates. Nevertheless, the spectral estimates have to be
multiplied by a scale factor of 1/0.875, due to the deformation of part

of the data.

4.3 The Fast Fourier Transform

4.3.1 Introduction
Consider a real- or complex-valued discrete time sequence, X,

for k = 0,1,2,...,N-1 which consists of N data points sampled at a

amAp o e s v %
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uniform time increment, At, so that the total time interval, T, is
equal to NepAt. The finite Fourier transform of this time sequence,
as defined by equation 4.2.2, has to be approximated by the discrete

Fourier transform, X_, defined as follows

r
p N1 -i2nEk
xr-‘ﬁ Ixe N > r-O,l,...,N-l . (4‘301)
k=0 k

This expression can be obtained from equation 4.2.2 by replacing
the time, t, by E%; the time increment, At, by %-and the frequency, f,
by %. The discrete Fourier transform consists of N discrete values,
corresponding to N consecutive frequencies, separated from each other
with a frequency increment, Af, equal to %n

The computation of the discrete Fourier transform of a complex data
sequence of N points, according to equation 4.3.1, requires N complex
multiplications and add’'tions. For an adequately large number of data
points, this number of operations would consume an enormous amount of
computer time and makes equation 4.3.1 practically useless. A more
efficient method for the computation of the discrete Fourier transform
of long data sequences is the fast Fourier transform, requiring only
2N1032N complex operations, instead of N2. For 8192 = 213 data points
the FFT requires approximately 315 times less computer time than required
by using the equation 4.3.1.

There exist several FFT techniques, varying in their details. A
technique, having the additional advantage of not requiring the bit-

reversal of the final values, will be presented in the following section.

4.3.2 Derivation of the Equations

The highest efficiency of the FFT is obtained, when the number, N,

: S R

L



39

of data points to be transformed is equal to an integer power of 2. If
this is not the case, the number of data can either be truncated to the
nearest lower power of Z by omitting some of the data or reach the near-
est higher power of 2 by adding some zero-valued data at the end of the
sequence,

Consider a time sequence of N points, where N is equal to 2p.
p=2,3,..., extending over the time interval lp,T]. Letting W = o127

for convenience, the equatiomn 4.3.1 can be rewritten as

- &
N-1 =S

xr = %‘ zoka ’ rs= O.I'OOO'N-I . (4-302)
k=

The integers k and r can be expressed in the binary number system as
= -P'l cp.zoou . 21 20 -
k hp_1 2 +ho_o 27 % +h2 22+hl 2l4h,¢2° , hy = 0,1 (4.3.3)
and
ey °2P°2+---+j2°22+j1°21+j°°2° 3y = 0,1,(4.3.4)

or, according to a different notation, as

k = (hp_l.ooo,hl’ho) (40305)
and
r= (jp-l’...’jl’j°> . (“1306)
Following this notation, equation 4.3.2 can be written as
N-1 Ik
X (4 3,0) =L T x(h__qseeeoh h )W N (4.3.7)
p—l""’ 1: o N (=0 p-l’ ’ 1' o ’
or, furthermore,
1 1 1 tk
T . N
X payoerend pd ) =g L Eeee x(hp_l,...,hl.ho)w .(4.3.8)

hy=0 b =0 hy ;=0

The first step of the FFT begins with the definition of the quantities

rv eI VS
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Nl, kl and rl, as follows

N =3 e 2P : (4.3.9)
1
k =k-h 2Pl apn P24 p 214 . .3
, o1 p-2 h] 21 + o (4.3.10)
and
r- Jo p=2 o
= = L] - LN 1 ® l *
r1 3 jp_1 2 +eeot 32 2% + jl 2 . (4.3.11)
The exponential term in equation 4.3.8 can be expanded as
tk  (2r +3)(k +h_, 2Pl k 3k 4h
—_ 2r) 3o . p-t )Tk 3K dohpa (4.3.12)
N N) N 2
Woo=W N -V W W
r h -1
where the term W ! P was omitted since it is equal to one. The new

quantities Al are introduced by the definition

. joh -1 jok
) . 2 N
A (hp_z,...,ho,jo) ) x(hp_l,....hl.ho)w W . {4.3.13)

1 =
hp—l 0
Finally, at the end of the first step of the FFI, equation 4.3.l

takes the following form
rk

1 1 1 -1&_1

T
X(3papseeesd od ) =3 I Zeeez A(h _,eeeh 33 )W 71 L(4.3.14)
p 1'-0 N ho'o h =0 hp-z'o 1 p-2 c'’o
)|

The N values of Al can be calculated from the original data directly
via equation 4.3.13 and recouire 2N compiex operations. The N values of
X, can be calculated from equation 4.3.14, requiring N-% complex opera-
tions. Consequently, the total number of operations is in the first
step reduced from X2 to N(g.+ 2).

The former approach can be further generalized. At the qth step
where q = 1,2,...,p-1, the quantities Nq. kq, q and Aq are introduced

as follows

RO UV ’ . el
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N
N = —S:}. = zp-q , (4.3.15;
q 2
- = * p-q - e p-q-l L . 1 . o 4 3
kq kq-l hp-q 2 hp-q"l 2 + -+ hl 2 + ho 2 ’ ,4-3016)
r -3
= q-1 q-1 - aP-q-1 4.. 9l 90
“q 2 Ip-1°2 MR P'YS R PR (4.3.17)

Aq(hP'Q'l"“'ho;jq-l"."JO) = h k
1 3q-1Pp-q Iq-1¥q

2 Ng-
= I Aq_l(hp_q,...,ho;jq_z....,jo)w wha-l | (4.3.18)
h__ =0
P-q
The general expression of the discrete Fourier transform, xr. at
the qth step is by induction obtained in the following form

X(jp_ls""jlojo) et

11 1 "dq
T I
2 - z Z L g 2 A (h _q-l.oio’ho;j —1’..°’j0)w q 0(403019)
“he=0 h=0h_ =01 P q ,
1 p-q-1
When q is equal to p-1, equation 4.3.19 is reduced to
r lk 1
T ! i
£ 0 = = M 'R -1 . ads
X(jp'l,...'jl’ o N h EoAp_l(hotjp_ZO ljo)w p (4 3 20)
)

The above formulation implies that the discrete Fourier transform,
Xr, of the discrete time history X where r,k = 0,1,...‘2p-1 can be
computed in p steps, frcm the consecutive calculation of the quanti-
ties Aq. Each of these stepe requires 2N complex multiplications and
additions, so that the total number of operations is 2pN. Furthermore,
at each step q, the quantities Aq can replace the quantities Aq-l in

the computer memory, so that only N memory positions are required.
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%.3.3 A Simple Example

The following example provides a detailed illustration of the
FFT approach, as discussed in chapter 4.3.2. A discrete time history,
consisting of 8 data points, xi, where { = 0,1,...,7, and extended at
the time interval {0,T], is given. Following the binary system nota-
tion, the quantities x; can be expressed as follows
x, = x(0,0,0) x“ = x(1,0,0)
x = x(0,0,1) x =x(1,0,1)
1 5 (4.3.21)
x = x(0,1,0) x6 = x(1,1,0)
x3 = x(0,1,1) x7 = x(1,1,1)
The discrete Fourier transform of this time history consists of 8

values, Xr, where r = 0,1,...,7, which, according to equation 4.3.2,

will have the following expressions in terms of the original data values

X =2(x +x+x +%x +%x +x +%x +x)
80 12 3 4 5 6 7

+

X, = L(x_ + x W8 + x W2/8 4+ x w3/8 4 x w4/8 4 x WS/8 4 x W6/8 4+ x W7/8)
80 1 2 3 4 5 6 7

X =T(x +x W8 + x w4/8 4 x w6/8 4 x 4+ x W2/8 4 x W4/ 4 x W6/8)
2 8o 1 2 3 Y 5 6 7

X = S(x 4+ x W8 4 x Wb/8 4 x w1/ 4 x WH/B 4 x WT/B 4 x W2/8 4 x y5/8)
3 870 1 2 3 Y 5 6 7

X o=t +x W/ 4 x +x W8 +x +xW/8 +x +x W/8)
y 870 1 2 3 4 5 6 7

X =i(x +x W/8 + x w2/8 4 x w8 4 x Ww4/8 4+ x W/8 + x W6/8 + x W3/8)
s 8o 1 2 3 " 5 6 7

X = I(xo +x W 8 4 x WH/B 4 x W2/8 4 x + x WS/B 4 x W/B 4+ x w2/8)
6 % 1 2 3 y 5 6 7

X, =g +x W/8 4+ x Wb/ 4 x WS/B 4 x WH/8 4 x W3/8 + x W2/8 + x Wl/8)
7 o 7 2 3 4 5 6 7

(4.3.22)
In the above expression, use has been made of the fact that w“,

where n is an integer, is equal to 1.
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The FFT consists of three steps, i.e. the consecutive calculation

of Al’ Az, X according to the equation 4.3.18.

Firgt Step
h k
1 fjlié 23 L
A (b hs3g) = Lx(h,h h )W 2w (4.3.23)

h=0 °
2

AI(O,O,O) = x(0,0,00W° + x(1,0,0)W° = X, +x

A (0,0,1) = x(0,0,00W° + x(1,0,0)W*/8 = x, + x“w‘*/8
AI(O,I,O) = x(0,0,1)W° + x(1,0,1)W° = x o+ x
A (0,1,1) = x(0,0,)w!/8 + x(1,0,1)w5/8 = xlwl/8 + xsw5/8
A (1,0,0) = x{0,1,00W° + x(1,1,0)W° = X, +x
A (1,0,) = x(0,1,00w2’8 + x(1,1,0)u8/8 = x2W2/8 + xewﬁ/8
A1(1,1,0) = x(0,1,1)W° + x(1,1,)uw° = x +x
A (1,1,1) = x(0,1,)W3/8 & x (1,1,1)W7/8 = x3w3/8 + x7w7/8 (4.3.24)
Second Step
1 lhl 1k2
. —7 N,
Az(ho;jl,Jo) = I A;h OV Wl (4.3.25)
h,=0
A (0,0,0) = A (0,0,0)W° + A (1,0,0)W° =x_ +x +x +x
2 1 1 ° y 2 6
A (0,0,1) = A (0,0,1)W° + A (1,0,1)W° = x5 + x W4/8 + x W2/8 + x wé/8
2 1 H 4 2 ()
A (0,1,0) = A (0,0,0)W° + A (1,0,0)W4/8 = x + x + x W4/8 + x w4/8
2 1 1 ° 4 2 6
A (0,1,1) = A (0,0,1)W° + A (1,0,1)W+/8 = X, + x W4/8 + x W6/8 + x W2/8
2 1 1 L 2 b
A (1,0,0) = A (0,1,00WC + A (1,1,008° =x +x +x +x
2 1 1 1 S 3 7
A (1,0,1) = A (0,1,1)W° + A (1,1,1)W° = x Wl1/8 + x W5/8 + x W3/8 + x W7/8
2 1 1 1 5 3 7
A (1,1,0) = A (0,1,00W2/8 + A (1,1,0)W6/8 =
2 1 1
x W2/8 + x W2/8 + x W6/8 + x we/8
1 & 3 7
A(1,1,1) = A (0,1,1)W2/8 + A (1,1,1)W6/8 =
? 1 1

x W3/8 + x w7/8 4+ x wl/8 & x7w5/8 (4.3.26)
1 5 3

o ol (SRR £ miapepds TS N
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Third Step

r k

) r 1 2.2
N

x - a Z N 2 - L]
(jz’jz’jo) 8, .oAz(ho,jl,jo)w (4.3.27)
[o]
. X_ = X(0,0,0) = {-[Az(o,o,O)w° + A2(1.o,0)w°] -

= %(xo + x, + x.2 + xs + X + X, + x3+ x7)
X, = X(0,0,1) = %[AZ(O,O,I)WO + Az(l,o,l)wol =

= %(xo + xqw“/e + x2W2/8 + xGWB/8 + xlwlls + x5w5/3 + x3W3/8 + x7w7/8)
X, = X(0,1,0) = %[AZ(O,I,O)W" + A2(1,1,0)W°] =

= %(xo + x“ + xzw“/e + sz“/G + xlwzla + xSWZ/B + x3W6/8 + x7w6/8)
Xy = X(0,1,1) = glA 0,1,V + A (1,1,1u°] =

= %‘(x0 + xl\‘wl"/8 + x2w5/8 + x6W2/8 + x1W3/8 + x5W7/8 + xaw‘/a + x7w5/8)
X, = X(1,0,0) = %[AZ(O,O,O)WO + A2(1,0,0)w“/°] =

= %‘(xo tx kx x + xlw"/‘3 + xswl’/8 + xaw"/8 4 x7w“/°)
Xg = X(1,0,1) = gla (0,0, + 4 (1,0,)u*/%] =

- %(x + kaula + x2W2/8 + x6w5/8 + xlw5/3 + xswlle + xaw7/3 + x7w3/8)

o}
T (]
Xg = X(1,1,0) = 5lA (0,1,0% + 4 (1,1,0u*/%] =
T
= §(x +x +x wl’/8 + x w“/a + x w6/8 + x WG/8 + x w2/8 + x WZ/B)
[] b 2 ) 1 5 3 7

X; = X(1,1,1) = %[Az(o,l,l)w° + A2(1,1,1)w‘*/8] -

B+ x W8 4 x w88 4 W2/8 4 W8 4 x w3/B 4 x uS/® 4 x /By
[ L 2 6 1 S 3 7
(4.3.28)
The final expressions in the equation 4.3.28 are identical to the
expressions in equation 4.3.22. Nevertheless, the required number of
operations with the FFT method is 24, while, according to equation 4.3.22,
the number of operations would be 64. The order of operations and the
elements used at each step of the previous example are illustrated in

figure 15.
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4.3.4 The FFT Computation

Although a FFT subroutine was available from the V.P.I. & S.U.

computer library, it proved most efficient to develop a new program

based on the formulation of chapter 4.3.2.

The flow chart of this
program is presented in figure 16.

A considerable saving in the computer time was obtained by the

recursive calculation of the sines and cosines, in which the expo-

nential terms are expanded, instead of recalling the built-in sub-~

routines. The general exponential term is expanded as
Ik rk
N -i2my 2rrk 2rrk

W =e = cos - i*sin

N rk = 0,1,...,8N=1 , (4.3.29)

while the sines and cosines can also be expanded as

2nrk

cos = cos Zﬂl!%:ll cos 2%‘- sin 2n(rk-1) sin 2n
N N N
and
2nrk 25 (rk=-1) 2 2n(rk-1 2
sin "; = CoSs T rN sin “§'+ sin N ) cos"l

N - (4.3.30)

According to the expressions 4.3.30, all sines and cosines

required ean be calculated with simple operations from the initial

2
values of cos gﬂ-and sin =%

N N+ Furthermore, since all sines and cosines

are simply related to the sines and cosines in the first quadrant,

N

the expressions 4.3.30 need to be used only for values of rk equal to
0,1,...,2‘— 1.
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4,4 Spectral Calculations in Each Block of Data

The FFT technique, as discussed in chapter 4.3, was developed for

complex data sequences. When applied to real time higtories, such as

the records of atmospheric measurements, it permits the simultaneous

computation of the Fourier transforms of two of these real time his-

tories.

Given the two real discrete time histories, X and Vi where

k = 0,1,...,N-1, a new complex sequence, z,, can be generated as

follows

zk-xk".'iyk [ k'O,l,...,N—l

If Zr’ r=0,1,...,8N-1, is the discrete Fourier transform of z

(4.4.1)

k

and Z: its complex conjugate, it has been proved (see for instance

reference 1), that the discrete Fourier traasiorms of the time his-

tories x, and y, can be respectively calculated as

1 N
X, =50z +2% 1 , r=01,...,5

and

i N
Yr = 21[zr - z;-r] . r = 0,1,...,3

(4.4.2)

(4.4.3)

It has to be mentioned that the finite Fourier transform of a

real time history has independent values only in the first half of

the frequency domain, namely for frequencies up to the so called

Nyquist frequency %;. The values of the Fourier tramsform in the

second half of the frequency domain are simply the complex conjugates

of respective values in the first half, i.e.
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NN
xr = &*-r Py r = ?’E + l’aoo’N . (4.4.&)

Taking advantage of the relations 4.4.2 and 4.4.3, the discrete
Fourier transforms of two of the quantities T, u, v and w at a time
are simultaneously calculated for each block of 8192 data points. The
block~spectral density function estimates will be calculated with use
of the expressions 4.1.1 and 4.1.4, appropriately modified for discrete
time histories.

Let X® and Y?, r = 0,1,...,§ s be the discrete Fourier transforms
r

of the nth block of the blocked time histories X, and Vi k =0,1,...,N-1.
The block~power spectral density function estimate, G:(fr), is then

calculated as
GR(E,) = 2{x0|2 (4.4.5)
X'\ TI%r ’ *Te

and the block~cross-spectral density function estimate, as

¢ (£

2 .nx o0
xylfr) =T X ¥ , (4.4.6)

r r

where r = 0,1,...;% and n = 1,2,,..,M.
The estimates of the coincidence and quadrature spectral density

functions for each block can be independently calculated as

Cho(E) = 2iRe(Xy) Re(¥)) - In(Xp) In(¥D)] (4.4.7)
and

~Q@y(£,) = S(Re(®XD) In(¥) + Tn(x]) Re(¥p)] L (b8

All block-spectral estimates need further to be multiplied by

the scale factor 1/0.875, due to the cosine taper data window.
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4.5 Smoothing of the Spectral Estimates

The block~-spectral estimates, G: and G:y, as calculated in chapter
4.4, follow chi-square distributions of 2 degrees of freedom with
mean values the respective spectral density functions, Gx or ny, and
standard deviations equal to the respective mean values (see reference
1). This implies that the average systematic error of the estimate
will be equal to 100%, which is quite unacceptable. Consistent esti-
mates of the spectral density function can be obtained by smoothing
the block estimates. A combined smoothing technique, of first smooth~
ing over the ensemble of eitimates (or segment averaging) and the
smoothing over appropriate frequency intervals will be used to pro-
duce appreciably accurate spectral estimates. The combined smooth-
ing is performed for the power spectral estimates and for the co- and
quad-spectral estimates, which are of main interest.

Let G represent any of the quantities Gy» ny and Qxy' The en-
semble smoothing consists in averaging all block spectral estimates,

Gn, so that the respective sample spectral estimates, E} are obtained,

.€.

- 1 ¥ a N
G(f) =y £ G (£) »  r=0,1,...5-1 . (4.5.1)
r n=1 r

The frequency smoothing consists in averaging all sample spectral

estimates over a frequency interval [f£ ] and assign the average

r+1’fr+£

values to the center frequency £ Therefore, each value of the

r
- 2
smoothed spectral estimetes, G, stands for & values of the raw spec-

+1°

tral estimates, E} and 1s generated according to the expression

1
i
'
1
1
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R 1 &
G(f ) =T LG(f ) . (4.5.2)
o+1 2 n=l r+m

2
The nonuniform distribution of energy in the spectra requires

that the frequency intervals for frequency smoothing are longer at
the high frequency regions, where less power is present. The pro-
posed frequency smoothing provides 46 values of the smoothed spec-
tral estimates out of 4096 values of the raw spectral estimates. The
calculation of these values and their distribution in the spectrum
are obtained from the following expressions

q=1,...4 , g =1

G(fr) = E(fr) N r = q . (4.5.3)
q= 5,...,15 s L =4

A 1 4 _

G(fr+2.5) = Z L G(fr+m) » I = 4(Q'4) ’ (4-5.4)

m=1

q=16"'0’24 s 2’16

. , 16 _

Sltryg.s) =15 I Sle) 5 ¥ = 16(@1) , (4.5.5)
q=25...,33 , % =64

" 1 64

Glfrygp,s) =4 2 G(E ) o7 =64(q-22. , (4.5.6)

m=]

q=36,...,46 , L = 256

. , 256_

G(f_y198.5) = ﬁmz_lc(fm) , r = 256(q-31) . (4.5.7)

~

As discussed before, the estimates of the smoothed power, Gy»

coincidence, éxy’ and quadrature, Qxy’ spectral density functions are

directly calculated with the use of the expressioms 4.5.1,...,4.5.7,

The smoothed estimates of the remaining spectral quantities, as defined

!
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in chapter 4.1, have still to be computed. The magnitude, Iéxy(f)|,

and the phase angle, 6xy(f), of the smoothed cross-spectral density

estimate are respectively calculated as

~ A ~ !5
Iny(f)l = [Ciy(f) + Q%y(f)]

(4.5.8)
and .
. Q. (f)
exy(f) = grctan Axy , (4.5.9)
ny(f)

while the smoothed estimate, ;iy(f)’ of the coherency function is
calculated as
|Gy (£) |2

Y3, (E) =
* G (6) 8y(D)

(4.5.10)

4.6 Plotting of the Spectra

In this report, the product of the spectral density function at

a certain frequency and the corresponding frequency itself is plotted

versus the natural logarithm of the frequency. This type of presenta-

tion of the spectra provides a more detailed picture of the spectral

functions in the higher frequency region where much less power is

present with comparison to the low frequency region. In addition, this

way of spectral plotting provides for a method of fast checking of the

spectral estimates.

The variances and covariances of a pair of mean-free time histories

are related to the power and coincidence spectral density functions

respectively (see reference 1) by the relations

®

X2 = I G (f) df (4.6.1)
0

" i i.
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and

xy = Of Cyy (£)dE . (4.6.2)

By simply transforming the integrand quantities, one may rewrite
the above relations as

X = [ £+G,(f) d(1nf) (4.6.3)
0

and
xy = ofwf-cxy(f) d(1nf) . (4.6.4)
Therefore, the accuracy of the spectral estimates can be checkes: by
comparing the respective values of the variances and covariances, as
calculated with procedures described in chapter III, to the areas under
the curves obtained by plotting the product of the frequency and the

power or coincidence spectral density function values at this frequency

versus the natural logarithm of this frequency.
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CHAPTER V

DISCUSSION OF THE RESULTS

The objective of this thesis 1is to provide an efficient method
for the measurement and the analysis of atmospheric turbulence data
and specifically to explain the procedures used for the statistical
and spectral analysis of the data. Therefore, the discussion is based
on one complete set of results obtained from the analysis of the data
recorded at one specific run with one of the anemometer svstems. From
the several records of data which were available at the time when this
thesis was written the data of run number 1 were selected. These data
were obtained on August 20, 1973, with the TSI #1193 anemometer at the
10C-foot level of the 250-foot meteorological tower located at NASA
Wallops Island Flight Center. Calibration specifications for the TSI
#1193 anemometer are provided in figures 7, 8, 9, 10 and 1l and in
table I. For the mean velocity and mean probe-yaw angle of run 1,
shown in table IV, it can be seen from the figures 11 and 10 respec-
tively that the expected error in the calculation of the magnitude
of the velocity is of the order of 1 percent while the expected error
in the calculation of the velocity components does not exceed 4 percert.

The data-record consists of 475,136 data points, recorded at a
time increment of 0.005 seconds over a total time interval of approxi-
mately 39 minutes and 35 seconds. As discussed in section 3.3, it is

divided into 58 blocks consisting of 8192 data points each, extending,

o
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over a time interval of approximately 41 seconds. The block-mean values
for the velocity components in the sensor oriented coordinate system,
their standard deviations, the velocity magnitude and the probe-yaw

angle are shown in table II. By inspecting the variation of these juan-
tities over the total number of blocks, one may observe a randuom rather
than systematic varying distribution. Only for the last four blocks

the mean wind seems to change slightly in magnitude as well as direction
but without any considerable change in its frequency composition. The
total number of reverse arrangements for the block-means of the above
quantities is also shcwn in table II. One can sea that all the calcu-
lated values for the number of reverse arrangements lie within the limits
of assumed stationarity as discussed in section 3.4. Therefore, it

was decided to consider the data of run 1 as being stationary and, hence,
to proceed with the statistical and spectral anslysis.

The block-means of the temperature and the velocity componenis in
the mean-wind oriented coordinate system are shown in table III, It can
be seen from this table that the vertical and lateral components take
values much smaller than the values of the longitudinal component, which
confirms that the mean wind is nearly horizontal, and nearly parallel to
the axis of the probe. The sample-mean values of the temperature, the
velccity components in the mean wind direction, the magnitude and phase
angle of the velocity voctor and all variances and covariances, obtained
by averaging the respective block-mean values, are shown in table IV.

As shown in this table, the calculated value of the sample probe-yaw

angle is very small (approximately l.34 degrees), which is a good indi-
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cation for the accuracy of the measurements. This mean wind is coming
from a south-eastern direction, namely di-ectly from the Atlantic Ocean
wittout any considerable upstream obstacle distortion.

It has to be emphasized at this point that the values of the vari-
ances and covariances depend on the length of the block-time interval
considered, due to the change in the block-mean values which are sub-
tracted from the instantaneous values. As discussed in section 4.6,
the variances and covariances represent the area under a spectral curve.
This area obviously depends on the frequency interval considered. For
instance, it has been generally accepted that the complet2 power spectrum
of the longitudinal wind component hes a form similar to the one shown
ip figure 17, as calculated by Van der Hoven from measurements at Brook-
havenr. This spectrum extends over a wide range of frequc»:ies and pre-
sents two major peaks. The peak at the low-frequency region (at a period
of approximately 100 hours) corresponds to periodic passage of cold or
warm fronts, while the peak at the high-frequency region (at a period of
the order of 1 minute) corresponds to the turbulent fluctuations of the
wind., It is the latter part of the velocity spectrum, often called the
"gust velocity" spectrum, which is of incerest in the study of turbulence.

"mesometeor-

The region of the spectrum between the two peaks, called the
ological gap" contains very little power, due to the fact that no normal
physical process can produce velocity fluctuations with frequencies
lying in this range.

Therefore, the values of variances and covariances are consistent

and romparable to each other, only when they are calculated from data-
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blocks extending over time intervals large enough to determiae the
spectrum down to frequencies near the mesometeorological gap, usually
of the order of one cycle per hour. This, of course, would require
data-samples extending over intervals of *he order of several hours.
For a given fixed data-sample, the block-iime length can be increased
by dividing the sample into a smaller number of blocks. This method
has the disadvantage that it provides less accurate values for the
sample-variances and covariances, since they are calculated as the
average of a smaller number of block-values.

The block~time length effect can be well illustrated with the
use of the turbulence intensities, defined as the ratios of the stan-
dard deviations of the velocity components in the mean wind oriented
coordinate system and the velocity magnitude. Th2 turbulence infren-
sities calculated from the data of run 1 for the block time lengths
of approximately 41, 328 and 1188 seconds are shown in table V. It
can be seen from this table that the values of the turbulence inten-
sities increase considerably as the block-~time length is increased,
especially in the case of the lateral velocity component.

The block~-tiwe length is also of great importance for the power
and cross-spectra, since it determines the lower frequency for which a
spectral density fur ..ion can be estimated from a given sample of data.
Consider a sample of data consisting of M blocks of N data points each,
sampled at a time increment At. Then the block-time length is equal to
N-At, while the total sample-time length will be equal to M:N.pt. The

smooth spectral estimates, as discussed in chapter IV, can be obtained
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for the frequency range between the lowest frequency (or fundamental
frequency), 1/N.At and the Nyquist frequency (or folding frequency),
1/2-At. Since the number of data per block, N, is held fixed equal

to 8192 due to the FFT needs, the only way of estimating the spectra

in lower frequency regions ic to increase the time increment, At, i.e.
to consider selectively only one part of the data points, separated from
each other with a longer time increment, At. As a result of the fixed
sample-time length, the number of blocks, M, has to be adequately de~-
creased, with the consequence of decreasing the effectiveness of the
ensemble smoothing.

The smooth spectral estimates in the frequency range from approxi-
mately 0.0244 hertz up to 100 hertz, are calculated by considering all
data points, namely taking At = 0.005 seconds and M = 58. Spectral
estimates for lower frequencies down to 0.0030 hertz are obtained by
considering one data-point out of eight, i.e. by taking At = 0.040
~econds and, as a consequence, M = 7. An attempt of estimating spec-
tral values for frequencies as low as 0,00084 hertz by taking At = 0.145
seconds and M = 2 (i.e. considering only one every 29 data points) was
abandoned, as producing unacceptably high distorted spectral estimates
as a result of the poor ensemble smoothing.

The power spectra of the longitudinal, the lateral and the verti-
cal velocity components and the temperature are shown in figures 18,
19, 20 and 21 respectively. It can be seen in these figures that the
power spectral estimates show a considerably small amount of scatter,

expecially for frequencies higher than approximately 0.1 hertz. At the
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lower frequency region, there exists higher scatter of the spectral
values, due primarily to the absence or inefficiency of the frequency
smoothing, as discussed in section 4.5. It can also be seen that spec-
tral values estimated from data sampled at time increments equal to

0.005 and 0.040 seconds are in general consistent, while increasing the
time increment to 0.145 seconds provides highly distorted values. The
form of the curves that can be fitted to the calculated spectral values
for the velocity components is in general monotonously decreasing, which
confirms that the estimated spectra lie in the gust velocity region. The
spectral curves approach zero at some frequency higher than 100 hertz.
Some high power spectral values, not shown in the above figures, were
calculated for frequencies close to 100 hertz but were discarded as
resulting from resolution errors. It has to be recalled at this point
that all frequencies higher than 100 hertz were removed from the original
data with the use of sharp low-pass electronic filters.

The estimated values of the magnitude of the cross-spectral density
function, the co-spectral density function and the coherence function
between the longitudinal and the vertical velocity components are shown
in figure. 22, 23 and 24 respectively. These estimates are in genetrul
less smooth than the power spectral estimates, due to the higher er: -x
involved in the calculations between two time histories. Of specific
interest is figure 24, since it indicates that the longitudinal and the
vertical velocity component fluctuations are completely incoherent for
all frequencies below a cut-off frequency of approximately 5 hertz.

Nevertheless, these fluctuations are considerably coherent for higher

2y
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frequencies, with an average value of the coherence function approxi-
mately equal to 0.6.

The checking of the accuracy of the spectral estimates, as sug-
gested in section 4.6, was performed for all the above cases with

satisfactory results.
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CHAPTER VI

CONCLUSION AND RECOMMENDATIONS

Concluding tiie discussion that hias been made in the previous chap-
ters of this thesis, one could summarize what was achieved as follows.

Highly accurate measurements are necessary for the detailed des-
cription of the wind flow in the atmospheric boundary layer. The data
obtained from these measurements have also to be in an appropriate form
in order to provide accurate estimates of the required statistical and
spectral quantities. To meet these requirements, a complete instrumen-
tation system was designed and a new data-analysis method was developed.

The TSI 1080 three-dimensional split-rilm anemometer system was
selected for the measurement of the instantaneous values of the wind-
velocity vector and the temperature. It provides seven output voltages
from which the velocity components in the sensor-oriented coordinate
system and the temperature can be calculated. The general calibration
procedure, which was suggested by TSI, was proved to be complicated
and inaccurate and, therefore, a new co -e calibration procedure had
to be developed. This calibration was btased on the recognized fact that
the anemometer gives the most accurate results when the probe operates
with its axis parallel to the direction of the mean-wind vector and
the sensors directed into the wind.

All measurements that were necessary for the calibration were per-

formed at the Quality Verification and Calibration Facility at NASA

59
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Wallops Flight Center. The entire procedure was streamlined into a
standard form, allowing a quick and efficient calibration of the large
number of anemometers used in this research program. Based on this
calibration, a computer program was developed, which converts the out-
put voltages of the anemometers into the actual velocity components
and the temperature. The accuracy of the obtained quantities was
checked and found satisfactory.

Six probes were mounted at the elevations of 30, 50, 100, 150,
200 and 250 feet on the 250-foot meteorological tower located at Wallops
Island on the Atlantic coasc. All probes could be rotated so that their
axis could be placed closely parallel to the mean wind direction. A
new complete data-acquisition system was designed and fixed in an instru-
mentation trailer, which enabled easy transportation and protection of
the system. At each run of the system, the output voltages from all
six anemometers were simultaneously recorded on analog magnetic tapes.
Later, each analog tape was played back and the analog signals from each
anemometer were digitized, sampled at a rate of one data-point every
0.005 seconds and recorded on a digital magnetic tape. Due to its
complexity, the data-acquisition system requires elaborate calibration
checks to insure its proper operation. The time duration of each data-
sample is approximately 40 minutes, as imposed by the maximum capacity
of the analog tapes. It has been attempted to increase the sample time
by using a lower speed of the analog tape-recorder, but this resulted
in unacceptably high noise-levels in the recorded signals.

Each of the above digital magnetic tapes contains a record of the
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seven output voltages of one TSI anemometer at one run of the system.
With the use of the program 'CONVERSION', as shown in the appendix,
a new magnetic tape was generated, containing a record of the three
velocity components in the sensor oriented coordinate system and the
temparature. Each time history consists of approximately 480,000 data
points, scparated from each other with a time interval of 0.005 seconds.

Consistent estimates of the statictical and spectral quantities
could be obtained only if certain aweraging procedures would be applied
to the data. Therefore, each time history was divided into a number
of data-blocks, so that all desired quantities would be calculated as
averages of the respective block~-values. The number of data-points in
each block was fixed and equal to 8192, as imposed by che fast Fourier
transform needs and the capacity of the available computer. The entir:
analysis was based on the assumption that the measured time histories
were stationary, which implies that all statistical quantities do not
vary significently over the total sample time interval. This assump-
tion was checked with the use of the program "STATIONARITY". This
program provides the block~mean values and the block-standard deviations
of the velocity components and the temperature as well as the results
of a statistical test which detects monotonic trends of the above quan-
tities. FEach data-record was further processed, only if the results of
the inspectica of the statistical block-values and the trend test would
ensure stationarity within reasonable limits of confidence.

The velocity components in the sensor-oriented coordinate system

do not possess any physical meaning. Therefore, a coordinate transfor-
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mation into a coordinate system connected with the mean wind direction
was necessary. This transformation provided the longitudinal, lateral
and vertical velocity components, which could give a good description
of the properties of the wind velocities. The new velocity components
were calculated and together with the temperature recorded on a new
digital magnetic tape with the use of the computer program ''MEAN-WIND".
This program also provides the variances and covariances of the above
four time histories as well as the turbulence intensities. As already
mentioned, each time history has beer divided into a number cf blocks
and all sample-quantities were calculated as the averages of the block-
values.

One of the main objectives of this thesis was to provide a method
for the calculation of reasonably accurate measurements of the power
and cross-spectral density functions of all three velocity components
and the temperature, expecially in the high frequency range between
0.1 and 100 hertz. Such a high frequency range is necessary for the
understanding of the turbulent stresses, turbulent transport phenomena
and turbulent dissipation. Spectral estimates for lower frequencies
down to 0.003 hertz were also calculated, but with lower accuracy due
to the limited time length of each data-sample.

It was recognized that the finite record-length of the data used,
would produce a certain amount of distortion in the spectral estimates.
Therefore, the cosine taper data window was used to reduce this effect.
The power, cross-, co- and quad-spectral density function estimates and

the coherence function estimate were calculated with the direct Fourier
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transform method. A new fast Fourier transform technique was developed
and used to enable fast and effective computations. This FFT technique
possegsses the addidional advantage of not requiring any bit-reversal
operation. A recursive computation of the necessary sines and cosines
was also used to further reduce the computation time.

First, a set of raw spectral estimates were obtained for each
block of 8192 data-points. Each block-spectral estimate consists of
4096 discrete values. Then all block-spectral values corresponding
to each frequency were averaged to produce the sample-spectral estimates,
consisting also of 4096 discrete values. Finally, the sample-spectral
values were averaged over appropriate frequency intervals to produce
the sumooth spectral function estimates, consisting of 46 spectral values
each. The frequency intervals were arranged in such a way, that the
consequent smooth spectral values would be separated by an.approximately
constant distance, when plotted versus a logarithmic frequency scale.
It was also decided to represent the spectral estimates by plotting the
smooth spectral density functions multiplied by the respective frequency
versus the natural logarithm of the frequency. This way, a clear repre-
sentation of the spectra in the high frequency region was obtained,
although very small power is present in this region. A fast way of
checking the accuracy of the spectral curves was possible by comparing
the areas under these curves to the respective values of variances and
covariances. The smooth spectral estimates are in general much more
reliable than the raw spectral estimates, since they are almost free of

scatter which may occur in a specific sample but is not due to an
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existing physical process. The smooth estimates obtained according to
the methods discussed, are considered to be reliable for use in most
applications. All computations that were necessary in order to obtain
the smooth spectral estimates of the three velocity components and the
temperature, were performed with the use of the program "SPECTRA", also
shown in the appendix. This program can be used in any sufficiently
large modern digital computer.

The discussion in this thesis was confined on one single record
of data, obtained with one anemometer system at the 100-foot level of
the meteorological tower. The main concern was to develop and check
the proposed method for the measurement and the statis*ical analysis
of atmospheric turbulence. As soon as several complete sets of measure-
ments from all six anemometers at the different elevations of the
meteorological tower are available, this method can be used to provide
sufficient material for a documented discussion on several important
aspects of the turbulence in the atmospheric boundary layer.

At the time this thesis was written, a number of modifications and
extensions of the above method were conceived but were not executed due
to the lack of time and the limitations of the computing facilities at
NASA Wallops Flight Center. Nevertheless, these modifications and
extensions are presented here so that they can be used in the continu-
ation of this research project.

1. Increase of the number of data per block. A final modification

of the computer program used for spectral calculations enabled the reduc-

tion of the amount of computer memory required, so that a number of
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16,384 data points could be simultaneously handled with the IBM 370
computer. Therefore, the number of data per block can be increased from
8,192 = 213 to 16,384 = 21%, This modification will increase the fre-
quency interval for which spectral estimates can be obtained to the
frequency range Letween approximately 0.0122 and 100 hertz and is also
expected to improve the accuracy of all spectral estimates.

Calculation of the auto- and cross-correlation functions. As

discussed in section 4.1, the auto-correlation function and the cross-
correlation function form Fourier transform pairs with the power and the
cross—-spectral density functions respectively. Therefore, the correla-
tion functions, R,(T) and ny(r), can be calculated as the inverse
Fourier cransforms of the spectral density function estimates, éx(f)

and éxy(f), respectively.

When auto- and cross-correlation functions are calculated from
spectral estimates, obtained from finite discrete time histories, cer-
tain considerations have to be made in order to avoid erroneous results.
Details on these considerations and computational recipes can be found
in the veferences 1 and 16.

3. Calculation of the integral scales of turbulence. The integral

scale lengths of turbulence characterize the maximum distance of two
points whose velocity fluctuations are correlated. Once the auto-cor-
relation functions are calculated, as discussed in the previous section,
simple integrations can provide the Eulerian integral time scales of
turbulence in the mean wind direction. Then, by assuming the validity

of Taylor's hypothesis, the iuntegral scale lengths of turbulence in
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the mean wind direction can also be obtained. These scales are an
estimate of the physical size of the turbulent eddies in the direction
of the mean wind at the different tower levels.

4. Calculation of the cross-gpectra and cross-correlations between

the velocity components and the temperature at different altitudes.

These quantities can be easily calculated by corbining the data obtained
from the anemometers located at different elevations on the meteorological
tower. The study of the variation of these quantities with height can
provide significant information about the vertical momentum and heat

flux as well as the vertical scales of the turbulence.
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TABLE IIT. BLOCK-MEAN VALUES OF THE VELOCITY COMPONENTS
IN THE MEAN WIND ORIENTED COORDINATE SYSTEM
AND THE TEMPERATURE (RUN 1, 100~-FOOT LEVEL)

Block Temperature Velocity Components
Number

n T (°F) G“(fps) v*(fps) ;n(fps)
1 82.14 14.34 0.75 0.40
2 85,22 13.61 0.26 0.78
3 85.67 13.08 1.09 0.47
4 83.44 13,50 0.45 0.49
5 80.73 13.32 -1.72 1.70
6 81.67 13.69 0.31 0.38
7 82.20 14.82 -0.33 0.98
8 85,88 13.66 0.24 0.88
9 80.65 13.65 0.64 0.25
10 83.21 13.64 -0.58 0.17
11 81.99 14,74 -0.98 0.86
12 82.76 14.68 -1.62 1.14
13 81.99 13.82 -2.67 0.18
14 81.43 14.41 -2.30 0.51
15 81.24 14.04 -1.45 0.23
16 82.08 13.63 -1.07 0.49
17 81.20 13.99 -1.95 0.18
18 81.36 14 .48 -1.49 0.82
19 81.48 14.45 -1.24 0.80
20 82.39 13.22 -1.55 0.25
21 81.23 13.49 -0.85 0.06
22 83.07 13.26 0.29 0.19
23 89.02 13.34 0.50 0.72
24 84,26 13.66 0.35 0.41
25 82.53 13.52 -1.64 0.98
26 82.27 13.44 -1.78 0.60
27 79.82 13.14 1.27 0.38
28 80.50 12.28 2.03 0.08
29 86.61 12.93 1.57 0.77
30 82.65 13.92 1.51 0.01
31 85.08 14.37 1.64 0.57
32 86.93 14.17 1.56 1.06
33 84.41 14.C1 0.94 0.52
34 B4.43 14.17 -0.40 0.89
35 84,31 14.29 0.05 1.01
36 £5.46 13.74 -0.14 1.01
37 85.67 13.36 0.34 0.1
18 81.97 13.65 -0.88 0.81
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s e

Block Temperature Velocity Components
Number
n T(°F) ;n(fps) Gn(fps) En(fps)
39 81.15 12.74 ~0.87 -1.33
40 83.32 12.61 ~-1.73 ~0.97
41 81.78 13.75 -1.42 ~-0.72
42 81.06 12.84 ~1.63 -0.81
43 82.08 12.54 -1.12 ~0.84
44 81.58 12.70 ~-0.97 ~0.84
45 81.92 13.34 ~1,21 -0.88
46 84.78 12.37 ~3.10 -1.01
47 81.80 12.20 ~1,21 -0.60
48 81.22 13.51 ~1,95 -1.02
49 82.57 14,30 C.64 ~-0.04
50 80,22 14.56 0.75 0.46
51 B1.03 13.98 ~-0.32 0.25
52 84.12 15.79 -0.14 -1.05
53 84,07 15.36 -0.16 -0.69
54 81.28 15.88 2,03 -0.30
55 77.92 15,80 4,66 0.23
56 77.31 16.36 6.16 -0.25
57 77.20 16.49 5.83 -0.49
58 77.33 16.61 4,58 0.06
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SAMPLE MEANS, VARIANCES AND COVARIANCES OF THE TEMPERATURE
AND THE VELOCITY COMPONENTS IN THE MEAN WIND ORIENTED
COORDINATE SYSTEM (58 BLOCKS, RUN 1, 100-FOOT LEVEL)

Sample Means

Sample Variances

Sample Covariances

el
"

<
i

£
"

=1
i

A
"

13.90
0.00
-0.53
13.91
1.34

82.44

fps
fps
fps
fps
degrees

°F

uZ = 0.475 (fps)?
= 0.753 (fps)?

= 0.391 (fps)?

IRV

= 6.46 (°R)?

0.063 (fps)?

-0.102 (fps)?

\_00178 fpS‘oR

0.060 (fps)?

-0.111 fps°*°R

sl S g % g g

-0.390 fps°°R
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TABLE V, TURBULENCE INTENSITIES FOR DIFFERENT BLOCK TIME LENGTHS
(RUN 1, 100-FOOT LEVEL)
T(sec) "F/ﬁ ‘F/ﬁ v wZ/U
~41 0.0495 0.0624 0.0450
~328 0.0648 0.1101 0.0527
~1188 0.0871 0.1455 0.0556
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APPENDIX

LISTING OF FORTRAN PROGRAMS

II.

I1I.

IV,

CONVERSION

STATIONARITY

MEAN-WTND
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